Roles of AtTPC1, vacuolar two pore channel 1, in Arabidopsis stomatal closure.

نویسندگان

  • Mohammad Mahbub Islam
  • Shintaro Munemasa
  • Mohammad Anowar Hossain
  • Yoshimasa Nakamura
  • Izumi C Mori
  • Yoshiyuki Murata
چکیده

Abscisic acid (ABA) induces production of reactive oxygen species (ROS) and nitric oxide (NO), elevation of the cytosolic free calcium ion concentration ([Ca(2+)](cyt)) and cytosolic pH (pH(cyt)), and activation of S-type anion channels in guard cells, causing stomatal closure. To investigate whether Arabidopsis Two pore channel 1 (AtTPC1) that encodes the slow vacuolar (SV) channel is involved in stomatal closure, we examined stomatal movements and mobilization of second messengers in the attpc1-2 loss-of-function mutant in response to ABA, methyl jasmonate (MeJA) and Ca(2+). Both ABA and MeJA elicited production of ROS and NO, [Ca(2+)](cyt) oscillations, cytosolic alkalization and activation of S-type anion channel currents to lead to stomatal closure in the attpc1-2 mutant as well as the wild type. Unlike the wild type, in the attpc1-2 mutant exogenous Ca(2+) neither induced stomatal closure nor activated plasma membrane S-type anion channel currents despite [Ca(2+)](cyt) elevation. These results indicate that AtTPC1 functions in response to external Ca(2+) but not to ABA and MeJA in Arabidopsis guard cells and suggest that AtTPC1 could be involved in priming of plasma membrane S-type anion channels by external Ca(2+) in Arabidopsis guard cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The two-pore channel TPK1 gene encodes the vacuolar K+ conductance and plays a role in K+ homeostasis.

The Arabidopsis thaliana genome contains five genes that encode two pore K+ (TPK) channels. The most abundantly expressed isoform of this family, TPK1, is expressed at the tonoplast where it mediates K+ -selective currents between cytoplasmic and vacuolar compartments. TPK1 open probability depends on both cytoplasmic Ca2+ and cytoplasmic pH but not on the tonoplast membrane voltage. The channe...

متن کامل

AtALMT9 is a malate-activated vacuolar chloride channel required for stomatal opening in Arabidopsis

Water deficit strongly affects crop productivity. Plants control water loss and CO2 uptake by regulating the aperture of the stomatal pores within the leaf epidermis. Stomata aperture is regulated by the two guard cells forming the pore and changing their size in response to ion uptake and release. While our knowledge about potassium and chloride fluxes across the plasma membrane of guard cells...

متن کامل

Gating of the two-pore cation channel AtTPC1 in the plant vacuole is based on a single voltage-sensing domain.

The two-pore cation channel TPC1 operates as a dimeric channel in animal and plant endomembranes. Each subunit consists of two homologous Shaker-like halves, with 12 transmembrane domains in total (S1-S6, S7-S12). In plants, TPC1 channels reside in the vacuolar membrane, and upon voltage stimulation, give rise to the well-known slow-activating SV currents. Here, we combined bioinformatics, stru...

متن کامل

Phosphatidylinositol 3-Kinase Promotes V-ATPase Activation and Vacuolar Acidification and Delays Methyl Jasmonate-Induced Leaf Senescence1

PI3K and its product PI3P are both involved in plant development and stress responses. In this study, the down-regulation of PI3K activity accelerated leaf senescence induced by methyl jasmonate (MeJA) and suppressed the activation of vacuolar H-ATPase (V-ATPase). Yeast two-hybrid analyses indicated that PI3K bound to the V-ATPase B subunit (VHA-B). Analysis of bimolecular fluorescence compleme...

متن کامل

Rapid structural changes and acidification of guard cell vacuoles during stomatal closure require phosphatidylinositol 3,5-bisphosphate.

Rapid stomatal closure is essential for water conservation in plants and is thus critical for survival under water deficiency. To close stomata rapidly, guard cells reduce their volume by converting a large central vacuole into a highly convoluted structure. However, the molecular mechanisms underlying this change are poorly understood. In this study, we used pH-indicator dyes to demonstrate th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant & cell physiology

دوره 51 2  شماره 

صفحات  -

تاریخ انتشار 2010